

MODULO 4

SEGURANÇA INDUSTRIAL E OPERACIONAL

NR'S

NR- 05 CIPA

NR- 06 - EPI

NR-07 PCMSO-CONTROLE MEDICO SAUDE OCUPACIONAL

NR-09 PPRA PREVENÇÃO RISCOS AMBIENTAIS

NR- 10 - ELETRECIDADE

NR-13 - PRESSÃO

NR-17 - ERGONOMIA

NR-19 EXPLOSIVOS

NR-33 - ESPAÇO CONFINADO

NR-34- CONDIÇÕES DE TRABALHO

NR-35 – TRABALHO EM ALTURA

NR 37 – SEGURANÇA E SAUDE EM UEP

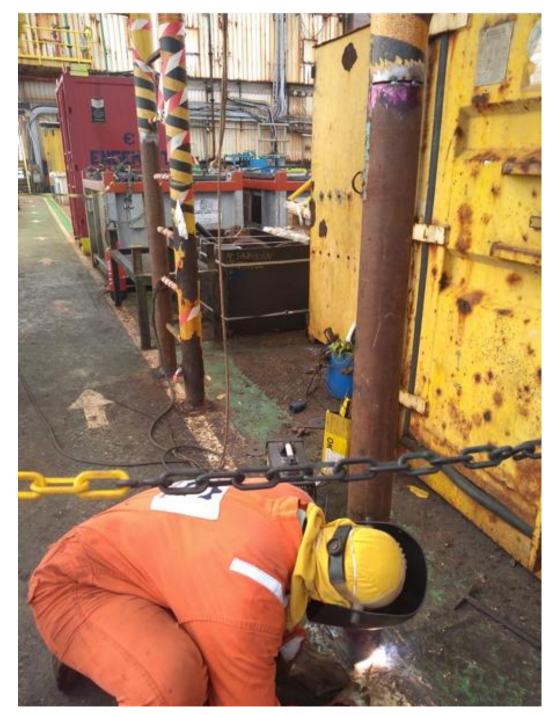
AUDITORIAS

SGSO

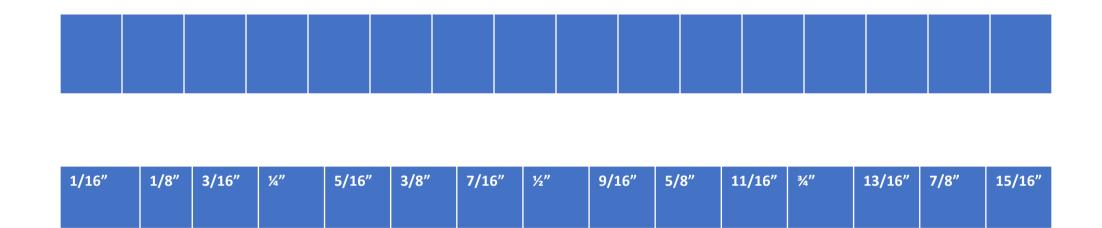
SGIP

ANP

OURO NEGRO


RAS

RASMA



Sistema Polegadas

EQUIPAMENTOS

MÓDULO 5 – TUBULAÇÃO

EQUIPAMENTOS

MÓDULO 5 – TUBULAÇÃO

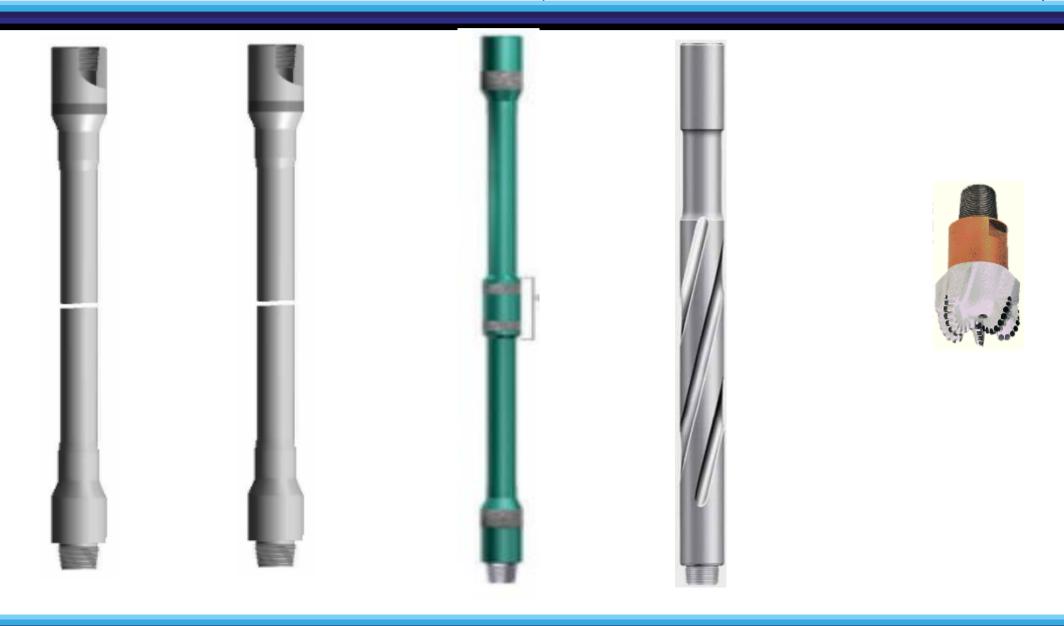
<u>Introdução</u>

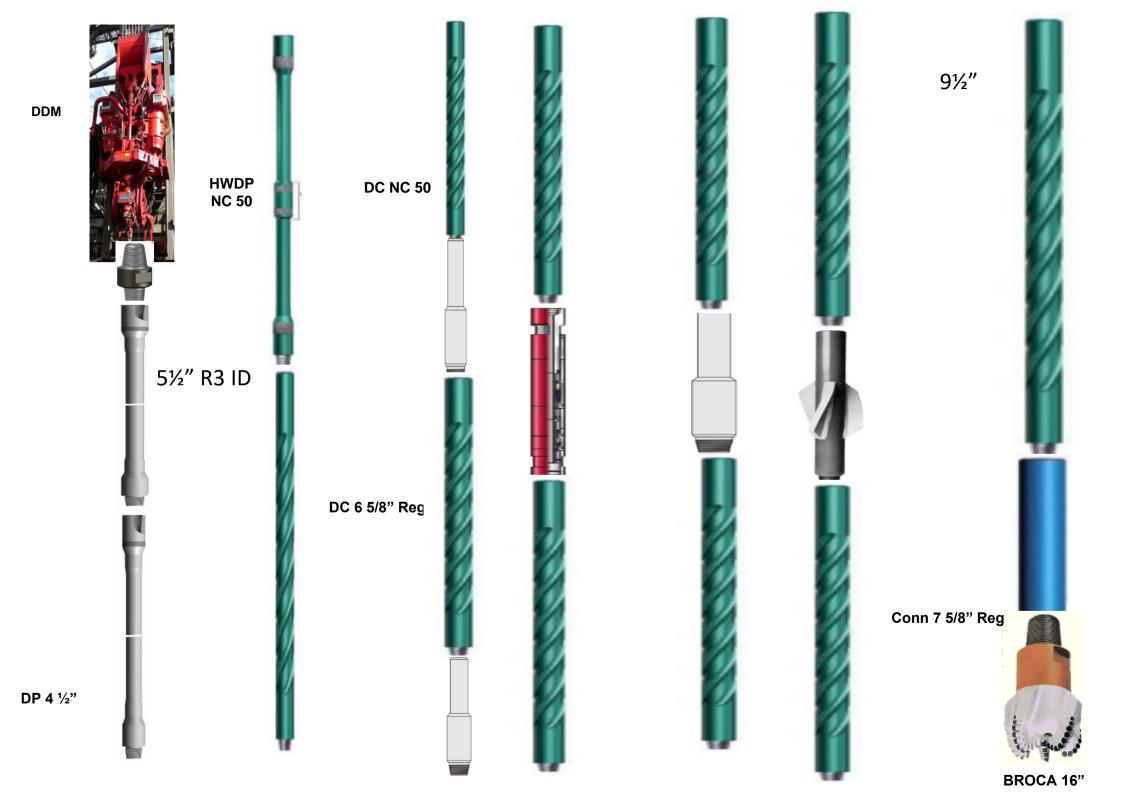
Constituída de tubos de aço, tendo em uma de suas extremidades (tooljoint) uma caixa e na outra um pino rosqueado, que permitem que sejam conectados uns aos outros, constituindo assim a coluna de perfuração.

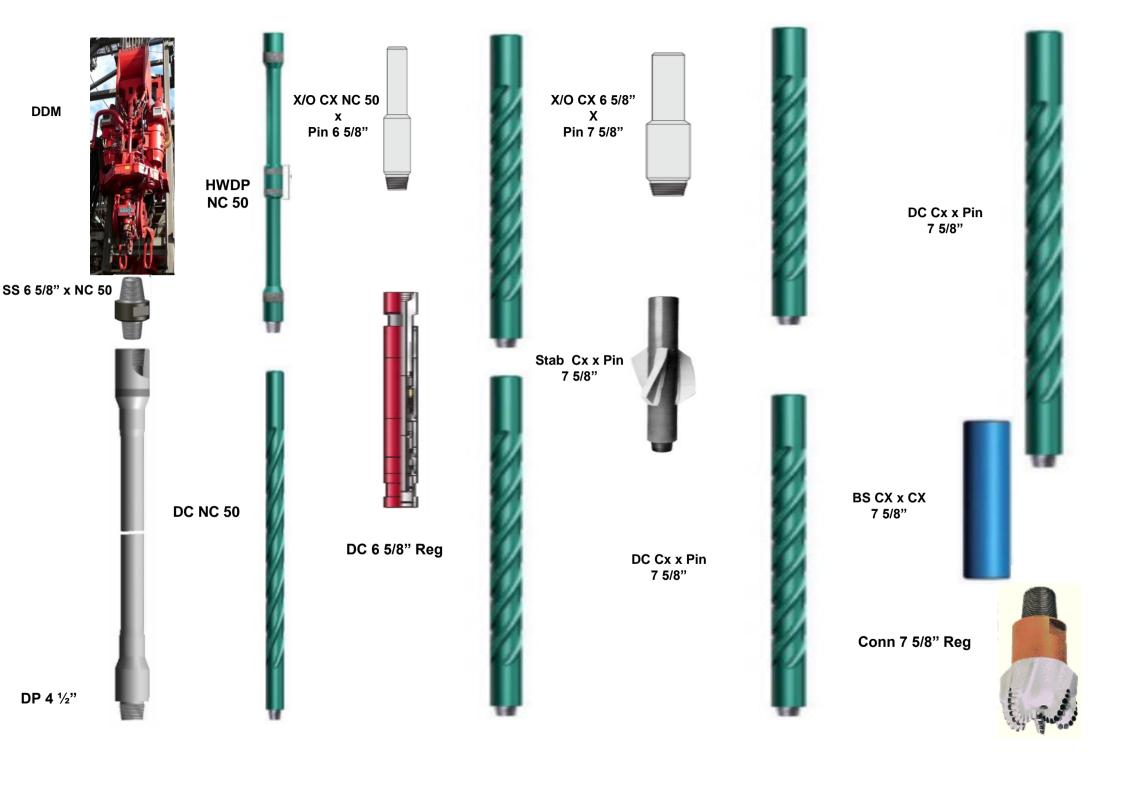
Abaixo destes tubos são colocados os *Comandos*, também conhecidos em inglês por *Drill Collares*, que são tubos de aço de peso elevado e que têm por finalidade dar peso sobre a broca de perfuração. Entre os tubos e os comandos são empregados pequenos tubos para fazer a conexão entre os tubos e os comandos, face terem diferentes tipos de roscas, são chamados *Subs*.



EQUIPAMENTOS AUXILIARES







EQUIPAMENTOS AUXILIARES

COLUNA DE PERFURAÇÃO

DP x 6 5/8" FH

X/O

DP x 5" - 4½" IF / NC 50

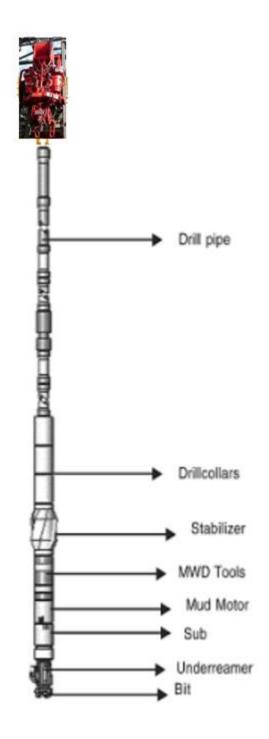
HWDP x DS 50 / NC 50

DC x 6 ¾" - NC 50

STBD

DC x 8" - 6 5/8" Reg

STBD

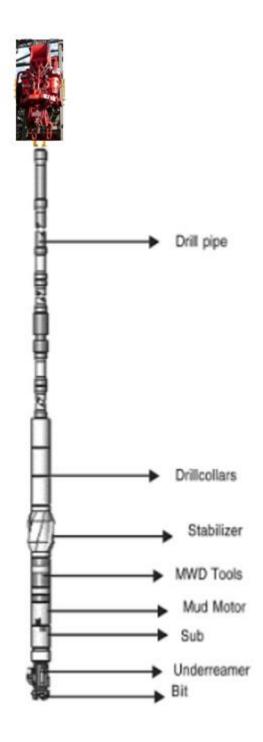

DC x 9½" - 7 5/8" Reg

STBD

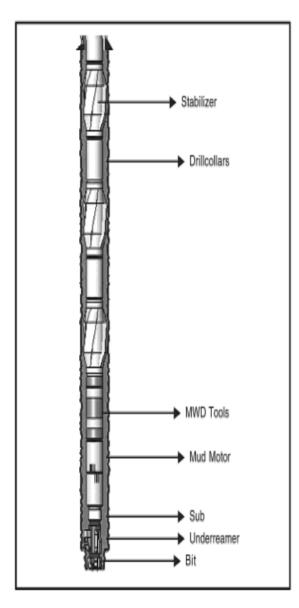
MM

BIT SUB

BIT



COLUNA DE PERFURAÇÃO


Coluna de Perfuração: é o Conjunto de tubos de perfuração e outros Componentes que desce do top drive até a broca.

Coluna de Drill Pipe: O Conjunto de drill pipe do top drive até a Composição do fundo (BHA).

BHA: Composição de Fundo

BHA - Composição de fundo:

O conjunto de componentes pesados montado no parte inferior da coluna de perfuração para colocar peso na broca e deixar os drill pipes em cima do BHA em tração.

COMPONENTES PRINCIPAIS DA COLUNA DE PERFURAÇÃO

- > Drill Pipe (DP),
- Heavy Weight (HWDP)
- > Drill Collares (DC)
- > BROCAS

COMPONENTES COMPLEMENTARES:

- Subs Broca
- > Reduções
- Estabilizadores
- Jars,
- Motores de Fundo
- > MWD, LWD, Under Reamer, etc.

EQUIPAMENTOS

QUAL A RAZÃO DE GABARITAR OS TUBOS DA COLUNA DE PERFURAÇÃO

QUANTOS GABARITOS DEVEREMOS TER NA PLATAFORMA PARA GABARITAR A COLUNA?

Tipos de Conexões

TUBULARES

Tipo	OD	Range	Conexão	Peso	Torque	Parede	ID	Drift
Drill Collars	9 1/2"	R2	7 5/8" Reg	216,94	97,5	3,250	3,0	3,0
Drill Collars	8 1/4"	R2	6 5/8" Reg	160 Lb/ft	59,0	2,719	2,812	2,687
Drill Collars	6 %"	R 2	NC 50	100,54	35,6	1,969	2,812	2,812
HWDP	5 ½"	R 2	DS 50	57,57 Lb/ft	43,3	1,125	3,250	3,250
DP - V 150	6 5/8"	R3	6 5/8" FH	52,83 LB/ft	56,0	0,750	5,125	4,250
DP - S 135	6 5/8"	R 3	6 5/8" FH	44,92 LB/ft	50,5	0,500	5,375	4,500
DP - S 135	5 ½"	R 3	DS 50	21,9 Lb/ft	36,3	,361	4,778	3 ½"

CAPACIDADE INTERNA

3800 m DP = OD 5'' - ID = 4,276'' WT - .361 R3 S - 135

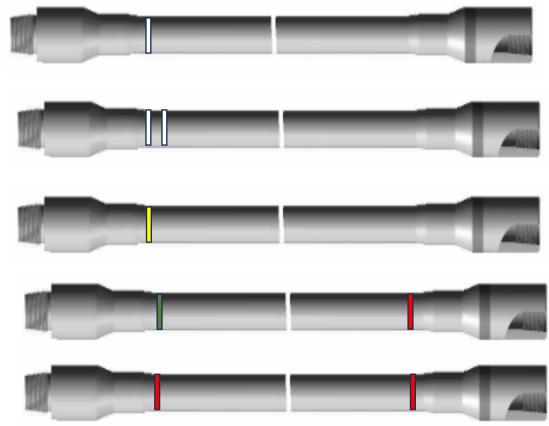
CALCULAR A CAPACIDADE INTERNA DESTA COLUNA DE DP

Drill pipe 5" x 4,276" x 3000m

 $ID^2 \times 0.00319 = 0.05833$ bbls/m x 3000 = 175 bbls

 $ID^{2} \div 1029,4 = 0,01776$ bbls /ft x 3000x3,281 = 175 bbls

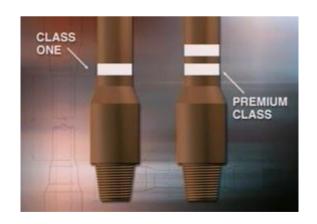
A CLASSIFICAÇÃO QUANTO A DESGASTE:

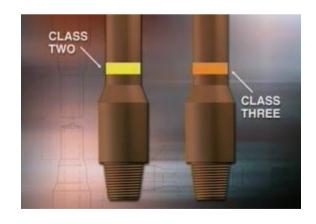

Curso de

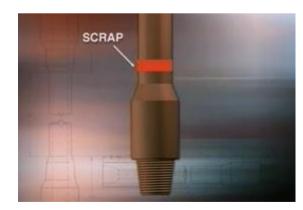
PLATAFOR

HICIIVI

EQUIPAMENTOS

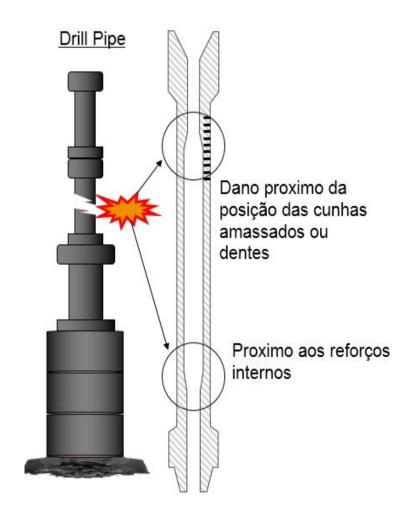


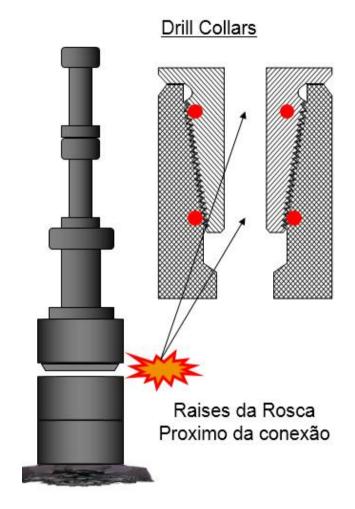




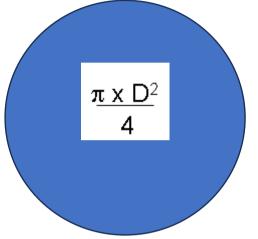
EQUIPAMENTOS

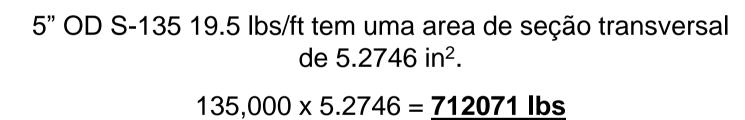
A CLASSIFICAÇÃO QUANTO A DESGASTE:

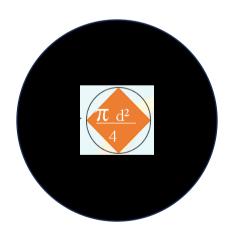

CLASSE	REDUÇÃO DA ESPESSURA	CODIGO FAIXA/COR
Novo	0% à 1%	1 Faixa Branca
Premium	0% à 20%	2 Faixas Branca
Classe 2	20% à 30%	1 Faixa Amarela
Classe 3	30% à 40%	1 Faixa Laranja
Reprovado	> 40%	1 Faixa Vermelha



IDENTIFICAÇÃO

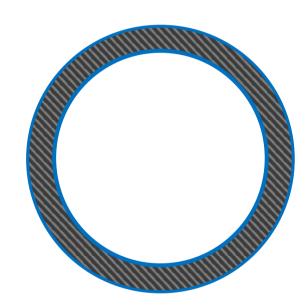





A resistência de tração do tubo novo é igual a resistência de escoamento mínima x área da seção transversal do corpo da tubulação.

$$3,1416 \div 4 = 0,7854$$

$$(5^2 - 4,276^2) \times 0,7854 = 5,2746$$

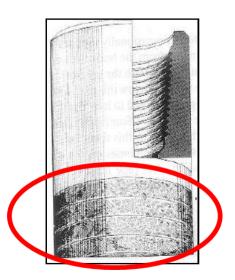


Qual a resistência de tração do tubo 5½" OD x 21,9 lbs/ft, x .361 wt, R3 S-135 Premium ?

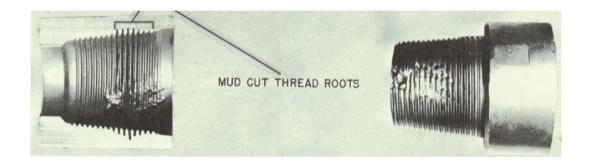
 $5,5^2 - 4,778^2$) x 0,7854 = 5,828

 $5,828 \times 135000 = 786,800$ lbs

 $786,800 \times 80\% = 629,440 \text{ lbs}$


TIPOS DE CONEXÕES

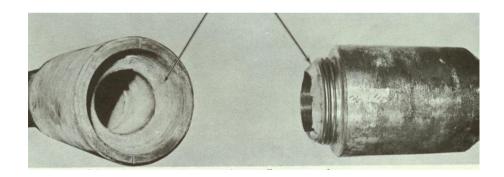
TIPO	OD	RANGE	CONN	PESO LB/FT	TORQUE	WT	ID	DRIFT
DC	9 ½"	R 2	7 5/8" Reg	216,94	97,5	3,25	3,0	3,0
DC	8 ¼"	R 2	6 5/8" Reg	160	59,0	2,719	2,812	2,687
DC	6 ¾"	R 2	NC 50	100,54	35,6	1,969	2,812	2,812
HWDP	5 ½"	R 2	DS 50	57,57	43,3	1,125	3,250	3,25
DP - V 150	6 5/8"	R 3	6 5/8" FH	52,83	56,0	0,750	5,125	4,25
DP - S 135	6 5/8"	R 3	6 5/8" FH	44,92	50,5	0,500	5,375	4,5
DP - S 135	5 ½"	R 3	DS 50	21,9	36,3	0,361	4,778	3,5

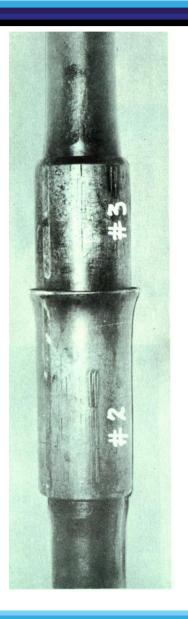

FALHAS HUMANAS

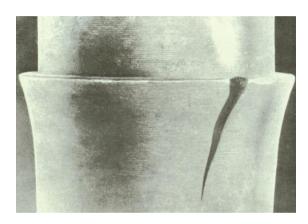
São negligências ou imperícia devido:

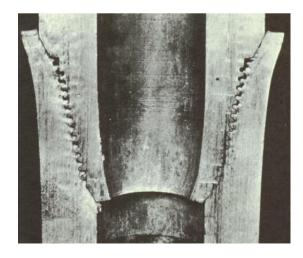
- Pequenos objetos próximos ao poço;
- Operação com parâmetros excessivos;
- Manutenção deficiente
- > Fluido de perfuração em condições inadequadas;
- > Hidráulica do poço ineficiente

Torque **INSUFICIENTE** nas conexões.








EQUIPAMENTOS

Torque **EXCESSIVO** nas conexões.

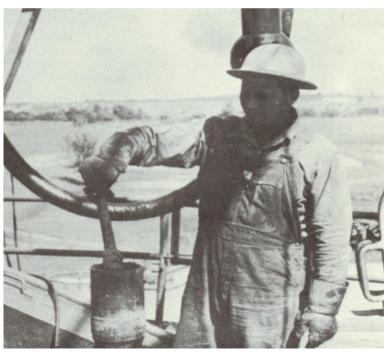
EQUIPAMENTOS

Roscas Incompatíveis de Tubulares

Roscas semelhantes, tende a induzir a erros e queda de coluna.

Medição da coluna


Falhas de medição, substituição e retirada de componentes da coluna, erros de cálculo e de passagem de serviço são as causas que levam a topadas com a coluna de perfuração, cimentação de revestimento em profundidade inadequada, tentativa de assentamento de ferramentas em pontos inadequados, etc.


EQUIPAMENTOS

> Lubrificantes não recomendados

O uso de lubrificantes não recomendados pode resultar em desgaste excessivo dos filetes das roscas, bem como dano na superfície dos espelhos, diminuindo tanto as resistências à tração e ao torque, como comprometendo a eficiência de vedação da conexão.

EQUIPAMENTOS

Não observação de parâmetros básicos e recomendações técnicas

Manobras.

São ocasiões de grande índice de pescarias, principalmente prisões. Nos itens a seguir estão grande parte dos motivos que levam isto a acontecer e quais devem ser os cuidados a serem tomados para minimizá-los: uso inadequado de equipamentos e imperícia estão entre os que mais contribuem para essas pescarias.

EQUIPAMENTOS

Na manobra deve-se:

NA RETIRADA - observar os espelhos dos tubos prevenindo-se contra "Wash outs", efetuar o rodízio da conexão quebrada e lubrificar com graxa adequada a caixa de DP's;

NA DESCIDA – ao manusear a seção de tubos, para efetuar a conexão, evitar o toque do pino no espelho da caixa do tubo que está acunhado, de preferência utilizando a ferramenta guia de pino, protetora do espelho durante a conexão.

QSMS

Na manobra deve-se:

Na montagem de colunas de produção limpar a rosca com escova metálica e passar graxa grafitada no pino.

Nunca passar graxa na caixa, pois após o enroscamento, o excesso pode ir para o fundo do poço através da coluna de produção, podendo causar tamponamento da mesma.

Verificar nos itens "Cunhas", "Chaves Flutuantes" e "Colar de Comandos" adiante, o cuidado com esses equipamentos.

QSMS

MÓDULO 6 OPERAÇÕES ROTINEIRAS

OPERAÇÕES ROTINEIRAS

Montar a coluna de perfuração

Montar BHA

Quais tipos de DC vai montar

Qual primeiro revestimento que vai descer no poço

Como vai preparar o revestimento para descer

Qual tipo de ferramenta vai usar para descer o revestimento

Que tipo de perfuração iniciamos no poço pioneiro

Qual o segundo revestimento

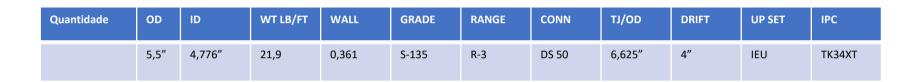
Qual operação após a descida do segundo revestimento

Qual a próximo revestimento

Cimentação

Qual operação antes de entra na próxima fase

Qual o próximo revestimento


Qual operação antes de entra na próxima fase

Qual o próximo revestimento

Qual operação antes de entra na próxima fase

TUBULARES

PERFURAR POÇO ATÉ MD 5850m.

BOP assentado a 2200m.

BHA: 400m

Quantos seções de DP precisamos montar na torre para alcançar a MD.

R2 - 9,5

R3 - 13,8

TUBULARES

Qua	antidade	OD	ID	WT LB/FT	WALL	GRADE	RANGE	CONN	TJ/OD	DRIFT	UP SET	IPC
		5,5"	4,776"	21,9	0,361	S-135	R-3	DS 50	6,625"	4"	IEU	TK34XT

PERFURAR POÇO ATÉ MD 5850m.

BOP assentado a 2200m.

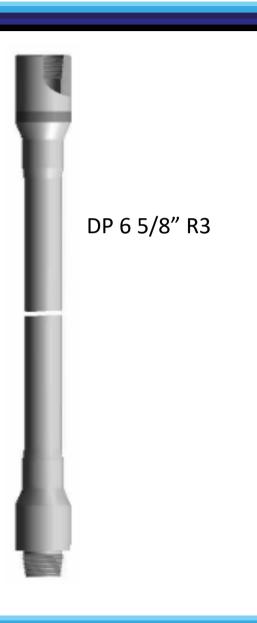
BHA: 400m

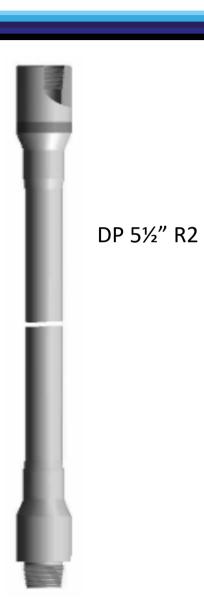
MD = 5850

BHA= 400

Resta = 5450m

58 seções = 2200m


3250 m


2200 / 9,5 / 4 = 232 juntas 58 seções

3250 / 13.9 / 3 = 234 juntas 78 seções

EQUIPAMENTOS AUXILIARES

COLUNA DE PERFURAÇÃO

DP x 6 5/8" FH

X/O

DP x 5" - 4½" IF / NC 50

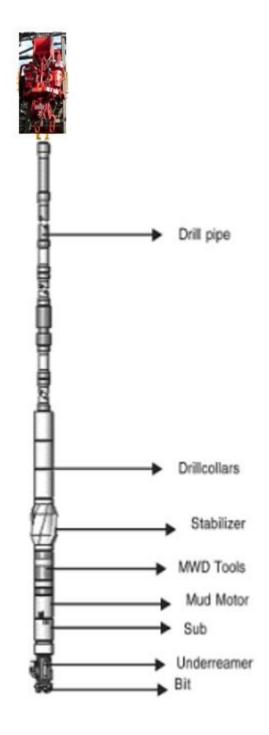
HWDP x DS 50 / NC 50

DC x 6 ¾" - NC 50

STBD

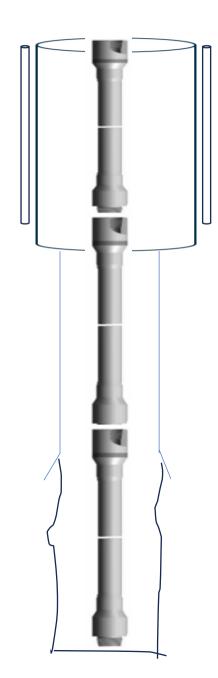
DC x 8" - 6 5/8" Reg

STBD


DC x 9½" - 7 5/8" Reg

STBD

MM


BIT SUB

BIT

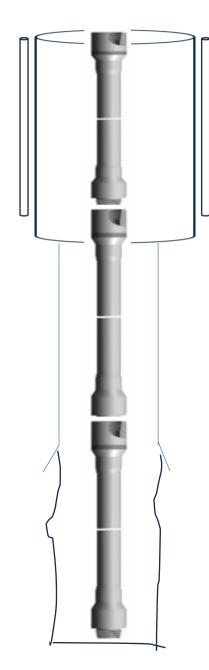
CAPACIDADE ANULAR

RISER = OD= 21" x ID = 19,5" CSG = OD = 9 5/8" x 8,61" DP = 5" x 4,276" C/K=3" OH=8.5"

WD=1800m CSG=2300M TD = 3800m

QUAL O VOLUME DA COLUNA?

QUAL O VOLUME DO RISER?


QUAL VOLUME K/C

QUAL O VOLUME ANULAR DO REVESTIMENTO?

QUAL O VOLUME DO OH.

QUAL VOLUME DO POÇO?

CAPACIDADE ANULAR

RISER = OD= 21" x ID = 19.5" $CSG = OD = 95/8" \times 8,61"$ $DP = 5'' \times 4,276''$ C/K=3" OH=8.5"

WD=1800m CSG=3300M TD = 3800m

VOLUME DA COLUNA = $4,276^2 \times 0,00319 \times 3800 = 222$ bbl.

VOLUME DO RISER= $(19,5^2-5^2) \times 0,00319 \times 1800 = 2040 \text{ bbl.}$

VOLUME K/C = 3^2X0,00319X1800X2=103BBLS

VOLUME ANULAR DO REVESTIMENTO=(8,61^2-5^2) x 0,00319 x 1500= 235 bbl.

VOLUME DO $OH=(8,5^2-5^2) \times 0,00319 \times 500 = 75 \text{ bbl.}$

VOLUME DO POCO=222+2040+103+235+75=2675BBLS

