

## FORMULÁRIO — UNIDADES DE CAMPO CONTROLE DE POÇOS PARA OPERAÇÕES DE PERFURAÇÃO E WORKOVER

Para instruções sobre arredondamento de números nos cálculos numéricos observar as seguintes regras e recomendações. Utilize os valores arredondados nos cálculos subsequentes.

## **REGRAS DE ARREDONDAMENTO**

- No cálculo da densidade do fluido de matar, **ARREDONDAR PARA CIMA** usando uma casa decimal (por exemplo: 10.73 lb/gal arredondar para 10.8 lb/gal; 11.03 lb/gal arredondar para 11.1 lb/gal).
- No cálculo da densidade equivalente do teste de absorção (**LEAK OFF TEST LOT**), **ARREDONDAR PARA BAIXO** usando uma casa decimal (por exemplo: 11.76 lb/gal arredondar para 11.7 lb/gal; 13.89 lb/gal arredondar para 13.8 lb/gal);
- No cálculo do programa de redução de pressão (pressure schedule), **ARREDONDAR PARA BAIXO** usando números inteiros (por exemplo: 21,6 psi/100 strokesarredondar para 21 psi/100 strokes);
- Para cálculos subsequentes, usar apenas os valores arredondados de densidade do fluido de matar e da densidade equivalente do teste de absorção.

## RECOMENDAÇÕES PARA ARREDONDAMENTO

Ver à direita da tabela:

X = Número inteiro

X,X = Número com 1 casa decimal

X,XXXX = Número com 4 casas decimais

X,XXXXX = Número com 5 casas decimais

\* 10 passos = Número de strokes da superfície até a broca dividido por 10.

| GRANDEZA                                                          | UNIDADE                             | ARREDONDAMENTO e<br>FORMATO DA<br>RESPOSTA |
|-------------------------------------------------------------------|-------------------------------------|--------------------------------------------|
| Profundidade                                                      | m                                   | X                                          |
| Pressão                                                           | psi                                 | X                                          |
| Gradiente de Pressão                                              | psi/m                               | X,XXXX                                     |
| Densidade de fluido                                               | lb/gal                              | X,X                                        |
| Volume                                                            | bbl                                 | X,X                                        |
| Capacidade e Deslocamento                                         | bbl/m                               | X,XXXXX                                    |
| Strokes ou ciclos                                                 | stk ou ciclo                        | X                                          |
| Velocidade da Bomba em strokes por minuto<br>ou ciclos por minuto | spm ou cpm                          | Х                                          |
| Velocidade                                                        | m/h                                 | X                                          |
| Área                                                              | pol <sup>2</sup>                    | X,XXXX                                     |
| Força                                                             | lb                                  | X                                          |
| Programa de redução de pressão – Método do Engenheiro             | psi/100 stk<br>ou<br>psi/10 passos* | х                                          |

|    |                                                                                            | Sigla                 | Unidade      | Fórmula                                                                                                                                                                            |
|----|--------------------------------------------------------------------------------------------|-----------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01 | Pressão                                                                                    | P                     | psi          | $P = \frac{Força}{Área}$                                                                                                                                                           |
| 02 | Pressão Hidrostática                                                                       | PH                    | psi          | $PH = \rho fluido \times 0,1704 \times TVD$                                                                                                                                        |
| 03 | Gradiente de Pressão                                                                       | G                     | psi/m        | $G = \rho fluido \times 0.1704$                                                                                                                                                    |
| 04 | Pressão da Formação                                                                        | PF                    | psi          | $PF = \rho poros \times 0.1704 x TVD$                                                                                                                                              |
| 05 | Pressão no Fundo do Poço<br>(Dinâmica)                                                     | ВНР                   | psi          | BHP = PH + $\Delta$ P anular                                                                                                                                                       |
| 06 | Densidade Equivalente de Lama                                                              | hoequivalente         | lb/gal (ppg) | $\rho = (\text{Pressão} \div 0.1704 \div \text{TVD})$                                                                                                                              |
| 07 | Margem de Segurança de Riser                                                               | MSR                   | lb/gal (ppg) | $MSR = \underbrace{\begin{array}{c} (PH \text{ do riser}) - (PH \text{ da água do mar}) \\ 0,1704 \text{ x } (TVD - Lâmina d'água - Air gap) \end{array}}_{} + \rho \text{fluido}$ |
| 08 | Volume de fluido retornado para o trip tank devido ao tubo em U. (fluido a mais retornado) | Vol.                  | bbl          | Vol =                                                                                                                                                                              |
| 09 | Volume total de fluido retornado para a superfície.                                        | Vol. <sub>total</sub> | bbl          | $Vol{total} = \left[ \frac{\rho tampão}{\rho fluido} \right] x volume do tampão$                                                                                                   |
| 10 | Redução de nível na coluna após a estabilização do tampão (Altura de coluna seca)          | H <sub>seca</sub>     | m            | $H_{seca} =                                   $                                                                                                                                    |
| 11 | Volume Retangular (Volume do Tanque)                                                       | Vol.                  | bbl          | Vol = Largura x Comprimento x H x 6,29<br>ou<br>Vol = (Largura x Comprimento x H) $\div$ 0,1589                                                                                    |
| 12 | Capacidade de um tanque em bbl/m                                                           | Cap.                  | bbl/m        | Cap = Largura x Comprimento x 6,29<br>ou<br>Cap = (Largura x Comprimento) ÷ 0,1589                                                                                                 |

| 13 | Deslocamento de Aço                                                   | Desl.               | bbl/m           | Desl. = $(OD^2 - ID^2) \times 0.00319$                                                              |
|----|-----------------------------------------------------------------------|---------------------|-----------------|-----------------------------------------------------------------------------------------------------|
| 14 | Volume de Aço                                                         | Vol. <sub>Aço</sub> | bbl             | Vol = Deslocamento x Comprimento (em MD)                                                            |
| 15 | Deslocamento coluna molhada                                           | Desl.col. molhada   | bbl/m           | $Desl{col.\ molhada} = OD^2 \times 0.00319$                                                         |
|    | (coluna cheia)                                                        |                     |                 |                                                                                                     |
| 16 | Volume de coluna molhada (coluna cheia)                               | Vol. col. molhada   | bbl             | Vol. col. molhada = Deslocamento x Comprimento (em MD)                                              |
| 17 | Capacidade Interna                                                    | Cap.interna         | bbl/m           | $Cap{interna} = ID^2 \times 0.00319$                                                                |
| 18 | Volume interno                                                        | Vol. interno        | bbl             | Vol. <sub>interno</sub> = Capacidade interna x Comprimento (em MD)                                  |
| 19 | Capacidade Externa/Anular                                             | Cap. Anular         | bbl/m           | $Cap{Anular} = (ID_{do poço}^{2} - OD_{da tubulação}^{2}) \times 0.00319$                           |
| 20 | Volume anular                                                         | Vol. anular         | bbl             | Vol. <sub>anular</sub> = Capacidade anular x Comprimento (em MD)                                    |
| 21 | Número de Strokes                                                     | Nº Stk's            | Strokes (stk's) | N° Stk's = Volume ÷ Capacidade da bomba                                                             |
| 22 | Tempo de Circulação                                                   | T.c.                | Min             | Tempo = Nº Strokes ÷ Velocidade da bomba                                                            |
| 23 | Pressão da Formação (Após o fechamento do poço)                       | P.F                 | psi             | PF = PH na coluna + SIDPP                                                                           |
| 24 | Pressão no fundo do Poço (Após o fechamento do poço)                  | ВНР                 | psi             | BHP = PH na coluna + SIDPP                                                                          |
| 25 | Pressão de Fechamento através da coluna (Shut in Drill Pipe Pressure) | SIDPP               | psi             | SIDPP = BHP – PH Coluna                                                                             |
| 26 | Pressão de Fechamento através do casing (Shut in Casing Pressure)     | SICP                | psi             | SICP = BHP – PH Anular                                                                              |
| 27 | Densidade da Lama de Matar (Peso da lama de matar)                    | <b>ρ</b> matar      | lb/gal (ppg)    | $\rho \text{matar} = \left[ \frac{\text{SIDPP}}{0,1704 \text{ x TVD}} \right] + \rho \text{fluido}$ |
| 28 | Densidade Equivalente de Circulação                                   | ECD                 | lb/gal (ppg)    | $ECD = \left[ \frac{\Delta P \text{ anular}}{0,1704 \text{ x TVD}} \right] + \rho \text{fluido}$    |

| 29 | Pressão na Sapata após o<br>Fechamento                                                       | Psap                 | psi             | Psap = PH sapata + SICP                                                                                                                               |
|----|----------------------------------------------------------------------------------------------|----------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30 | Densidade Equivalente de Fratura (Máximo peso de lama)                                       | hofrat               | lb/gal (ppg)    | $\rho \text{frat} = \underbrace{\frac{\text{Pressão de Absorção}}{0,1704 \text{ x TVD sapata}}}_{} + \rho \text{fluido do teste}$                     |
| 31 | Densidade Equivalente de Fratura (Máximo peso de lama)                                       | hofrat               | lb/gal (ppg)    | $\rho$ frat = Gradiente de fratura $\div 0,1704$                                                                                                      |
| 32 | Máxima Pressão Permissível no<br>Choke antes do kick (Pressão<br>Máxima Estática de Fratura) | MAASP                | psi             | MAASP = $(\rho \text{frat} - \rho \text{fluido atual}) \times 01704 \times \text{TVD sapata}$<br>ou<br>MAASP = Pressão de Fratura – PH sapata         |
| 33 | MAASP Após Controle                                                                          | MAASP                | psi             | MAASP = $(\rho \text{frat} - \rho \text{lama de matar}) \times 01704 \times \text{TVD sapata}$                                                        |
| 34 | Pressão Reduzida de Circulação                                                               | PRC                  | psi             | PRC = Somatório das perdas de carga (ΔP)                                                                                                              |
| 35 | Nova pressão de bombeio quando a velocidade da bomba for alterada                            | P <sub>Bombeio</sub> | psi             | $P_{\text{Bombeio}} = \begin{bmatrix} \underline{\text{SPM nova}} \\ \underline{\text{SPM atual}} \end{bmatrix}^2 \text{ x Pressão de bombeio atual}$ |
| 36 | Nova pressão de bombeio quando a densidade de fluido for alterada                            | P <sub>Bombeio</sub> | psi             | $P_{\text{Bombeio}} = $ $\boxed{\begin{array}{c} Fluido \ novo \\ Fluido \ atual \end{array}}$ $X$ $Pressão de bombeio atual$                         |
| 37 | Pressão Inicial de Circulação                                                                | PIC                  | psi             | PIC = PRC + SIDPP                                                                                                                                     |
| 38 | Pressão no choke imediatamente após a entrada da bomba                                       | Pchoke               | psi             | Pchoke = SICP – Perda de carga da linha de choke (CLF)                                                                                                |
| 39 | Pressão Final de Circulação                                                                  | PFC                  | psi             | PFC = Fluido de matar x PRC Fluido atual                                                                                                              |
| 40 | Pressão Final de Circulação 2                                                                | PFC <sub>2</sub>     | psi             | $PFC_2 = PFC +                                  $                                                                                                     |
| 41 | Queda de pressão                                                                             | Queda                | Psi/100 strokes | $Queda = \left[ \frac{PIC - PFC}{Stk's da coluna} \right] \times 100$                                                                                 |

| 42 | Queda de pressão                                     | Queda                    | Psi/step  | $Queda = \boxed{\frac{PIC - PFC}{10}}$                                                                                                                                             |
|----|------------------------------------------------------|--------------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 43 | Diferencial de pressão                               | ΔPressão                 | psi       | $\Delta$ Pressão = ( $\rho$ fluido maior – $\rho$ fluido menor) x 0,1704 x TVD                                                                                                     |
| 44 | Capacidade da bomba                                  | Cap. <sub>Bomba</sub>    | bbl/stk's | $\frac{D^2 \times Comprimento \ da \ Haste \times Eficiência \times 0.0102}{42}$                                                                                                   |
| 45 | Altura do influxo                                    | H <sub>kick</sub>        | m         | H <sub>kick</sub> = Volume do Kick ÷ Capacidade anular                                                                                                                             |
| 46 | Lei de Boyle                                         |                          |           | $P_1 \times V_1 = P_2 \times V_2$ *Pressão Atmosférica = 14,7 psi                                                                                                                  |
| 47 | Volume de Expansão de gás durante o controle de poço | Vol. <sub>Expansão</sub> | bbl       | $Vol{Expansão} = $                                                                                                                                                                 |
| 48 | Velocidade de Migração do Gás                        | Vel. <sub>Migração</sub> | m/h       | Vel. <sub>Migração</sub> = <u>Aumento da pressão de fechamento (psi/h)</u> Gradiente do fluido psi/m  (Usar o aumento da pressão no bengala ou no choke registrado na última hora) |
| 49 | Volume a ser Drenado Devido à<br>Migração do Gás     | Vol.                     | bbl       | Vol = Pressão a ser drenada  x Capacidade do anular  Gradiente do fluido  x Capacidade do anular  (Para o Método Volumétrico)                                                      |

## FÓRMULAS DE CONTROLE DE POÇO PARA COMPLETAÇÃO/WORKOVER (UNIDADES DO BRASIL)

|    |                                                          | Sigla     | Unidade      | Fórmula                                                                                                                          |
|----|----------------------------------------------------------|-----------|--------------|----------------------------------------------------------------------------------------------------------------------------------|
| 01 | Densidade do Fluido de<br>Matar                          | homatar   | lb/gal (ppg) | homatar = $ ho$ fluido<br>(*Se não tiver TVD, usar o topo dos canhoneados; **SITP – Pressão de fechamento na coluna de produção) |
| 02 | Densidade do Fluido de<br>Matar                          | homatar   | lb/gal (ppg) | $\rho$ matar = BHP ÷ 0,1704 ÷ TVD                                                                                                |
| 03 | Pressão Hidrostática<br>Inicial                          | РН        | psi          | PH = Pressão da formação - SITP                                                                                                  |
| 04 | Densidade Média Inicial do Fluido                        | hofluido  | lb/gal (ppg) | $\rho$ fluido = (Pressão hidrostática inicial ÷ 0.1704 ÷ Topo dos canhoneados (TVD)                                              |
| 05 | Pressão de Fratura da<br>Formação                        | Pfrat     | psi          | Pfrat = Gradiente de fratura da formação x Topo dos canhoneados (TVD)                                                            |
| 06 | Densidade Equivalente de Fratura                         | hofratura | lb/gal (ppg) | $\rho$ fratura = Gradiente de fratura ÷ 0,1704                                                                                   |
| 07 | Pressão Máxima Inicial na Superfície                     | MAASP     | psi          | MAASP = Pressão de fratura da formação - Pressão hidrostática inicial                                                            |
| 08 | Pressão Máxima Inicial na Superfície                     | MAASP     | psi          | MAASP = [(Gradiente de fratura – Gradiente de poros) x Topo dos canhoneados] + SITP                                              |
| 09 | Pressão Máxima Final na Superfície                       | MAASP     | psi          | MAASP = ( $\rho$ fratura – $\rho$ matar) x 0,1704 x Topo dos canhoneados                                                         |
| 10 | Pressão no Fundo do<br>Poço (Circulação<br>Convencional) | ВНР       | psi          | BHP = PH + Perdas de carga do Anular (ΔP Anular)                                                                                 |
| 11 | Pressão no Fundo do<br>Poço (Circulação<br>Reversa)      | ВНР       | psi          | BHP = PH + Perdas de carga da Coluna (ΔP Coluna)                                                                                 |

| 12 | ECD (Circulação<br>Convencional)                  | ECD         | lb/gal (ppg) | ECD =                                                                                                                                                                                                                                 |
|----|---------------------------------------------------|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 | ECD (Circulação<br>Reversa)                       | ECD         | lb/gal (ppg) | ECD =                                                                                                                                                                                                                                 |
| 14 | Capacidade Interna                                | Cap.interna | bbl/m        | $Cap{interna} = ID^2 \times 0.00319$                                                                                                                                                                                                  |
| 15 | Volume para o<br>Bullheading                      | Vol.        | bbl          | Vol. = Linhas de superfície <sub>bbl</sub> + Superfície para EDC <sub>bbl</sub> + EDC para Topo dos perfurados <sub>bbl</sub> + Topo dos perfurados para Base dos perfurados <sub>bbl</sub> {EDC = Extremidade da coluna de produção} |
| 16 | SPM da Bomba para<br>Exceder a Migração do<br>Gás | Vel.        | SPM          | Vel = [(Migração do gás ÷ 60) x Cap. da coluna] ÷ Desl. da bomba                                                                                                                                                                      |
| 17 | Densidade do Fluido                               | hofluido    | lb/gal (ppg) | hofluido = [(Temp. média °C – Temp. na superfície °C) x Perda de massa] + $ ho$ fluido na temperatura média                                                                                                                           |

| Massa Específica (lb/gal) | Perda de Massa Específica (lb/gal/°C) |
|---------------------------|---------------------------------------|
| 8.4 - 9.0                 | 0.00306                               |
| 9.1 - 11.0                | 0.00450                               |
| 11.1 - 14.5               | 0.00594                               |
| 14.6 - 17.0               | 0.00720                               |
| 17.1 - 19.2               | 0.00864                               |

Exemplo de Tabela de Perda de Massa

(Nota: Os valores podem variar a depender do tipo de fluido e de outros fatores)